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Abstract

Segmenting note objects in a real time context is useful for
live performances, audio broadcasting, or object-based cod-
ing. This temporal segmentation relies upon the correct de-
tection of onsets and offsets of musical notes, an area of much
research over recent years. However the low-latency require-
ments of real-time systems impose new, tight constraints on
this process. In this paper, we present a system for the seg-
mentation of note objects with very short delays, using recent
developments in onset detection, specially modified to work in
a real-time context. A portable and open C implementation is
presented.

1 Introduction

1.1 Background and motivations

The decomposition and processing of audio signals into
sound objects are emerging fields in music signal processing.
As well as allowing analysis of the content of an audio signal,
it is in tune with accepted views on the human hearing pro-
cess (Bregman 1990), and is particularly relevant to music,
where musicians and musicologists have long proposed mod-
els based on musical objects (Schaeffer 1966). Sound-object
taxonomies are at the core of novel research in music analysis
(Ellis 1996) and frameworks have been recently proposed for
the real-time transmission of object as audio content (Ama-
trian and Herrera 2002).

While many music-oriented applications require real-time
functionality, little has yet been done to address the issue of
real-time extraction of music objects, at least at levels higher
than the composition of sinusoids. Note that real-time im-
plementation is not only concerned with speeding up exist-
ing offline algorithms, but also with dealing with the con-
straints imposed by operating on a continuous, unknown and
unpredictable stream of audio data. In (Brossier, Sandler, and
Plumbley 2003), we presented a framework for the object-
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Figure 1: Overview of the segmentation process

based construction of a spectral-model of a musical instru-
ment. In the current paper, we concentrate on the temporal
aspects of this process, investigating methods for the segmen-
tation of note objects in real-time.

1.2 Temporal definition of note objects

In order to segment note objects, we need to identify the
boundaries of a musical note, namely the exact times when
the note starts — an onset — and finishes — an offset. These
boundaries can be easily identified on the temporal envelope
of an isolated musical note, that can be roughly characterised
by the well-known ADSR (Attack Decay Sustain Release)
linear approximation. However, a correct characterisation of
onsets and offsets is not trivial, and depends on the notion of
transients — transitional zones of short duration characterised
by the non-stationarity of the signal spectral content.

Algorithms intended for the detection of onsets and off-
sets rely on observing those transients, a complex task not
only because most notes are not present in isolation, but also
because the nature of these transients changes from sound to
sound — burst of energy across the spectrum for percussive
sounds, large variation of the harmonic content for tonal or
voiced sounds. This emphasises the difficulty of constructing
a unique detection function that quantifies all relevant obser-



vations.

1.3 Overview of this paper

Fig. 1 gives an overview of the process of note object seg-
mentation as implemented in this paper. First, we reduce the
audio signal to an onset detection function at a lower sam-
pling rate. Then, we perform temporal peak-picking on the
detection function to obtain a sequence of onset times. These
are combined with the output of a silence detector to produce
the onset/offset pairs that define the boundaries of our note
objects.

This paper is organised as follows: in Section 2 we ex-
plain a number of different techniques for the generation of
onset detection functions, the temporal peak-picking and the
silence detection and discuss their implementation in real-
time; Sec. 3 discusses the details of our software library and
presents quantitative results of the integration of the different
parts of the system; our conclusions are presented in Sec. 4.

2 Techniques and Implementation

2.1 Onset detection functions

For a signal x at time n, let us define X [n] as its Short
Time Fourier Transform (STFT), calculated using the phase
vocoder. Xj[n], the value of the k" bin of X|[n], can be
expressed in its polar form as | X, [12]|e7?* ("] where | X} [n]| is
the bin’s spectral magnitude, and ¢[n] its phase.

In (Masri 1996), a High Frequency Content (HFC) func-
tion is constructed by summing the linearly-weighted values
of the spectral magnitudes, such as:

Dyln] =) k| Xy[n]] (1)

This operation emphasises the changes that occur in the higher
part of the spectrum, especially the burst-like broadband noise,
usually associated with percussive onsets, that is successfully
characterised. However, the function is less successful at
identifying non-percussive onsets — legato phrases, bowed
strings, flute.

Other methods, reviewed in (Bello, Duxbury, Davies, and
Sandler 2004), attempt to compensate for the shortcomings
of the HFC by also measuring the changes on the harmonic
content of the signal. One of such methods, known as the
spectral difference, calculates a detection function based on
the difference between the spectral magnitudes of two STFT
frames:

Dyln) = > | Xk[n]| - | Xpln - 1]]. 2
k=0

Alternatively, a function that measures the temporal insta-
bility of phase can be constructed by quantifying the phase
deviation in each bin as:

1 [n] = princarg <82¢k [n]> o)

on?

where princarg maps the phase to the [—, 7] range. A useful
onset detection function is generated as:

Dyln] = = 3 Iéln] @)

Both approaches can be then combined in the complex-domain
to generate a target STFT value Xj[n] = |Xz[n]|ei®xn],
where qgk is the phase deviation function defined in Eq. 3.
Then by measuring the complex-domain Euclidean distance
between target and observed STFT we obtain:

RTI 2
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This function successfully quantifies percussive and tonal on-
sets.

For our experiments, we have implemented the four de-
tection functions previously mentioned. Their offline imple-
mentations have proven to give good results on a variety of
CD recordings, including percussive, purely harmonic signals
and complex mixtures — pop and jazz recordings.

2.2 Temporal peak picking of note onsets

To obtain sequences of onset times, we need to process
these detection functions through a temporal peak-picking al-
gorithm. A number of peak-picking techniques have been
proposed in (Kauppinen 2002). Intuitively peak-picking is
reduced to selecting local maxima above a certain threshold
value. However, in order to successfully perform this oper-
ation in a varied set of detection functions — and on a wide
variety of signals — a number of processes are required.

Usual processes include the normalisation, DC-removal
and low-pass filtering of the original function. This is done to
maximise the success of the thresholding operation, by map-
ping functions to a limited range of values and by reducing
noisiness in their profile that may result in spurious detec-
tions.

Also, dynamic thresholding is used to compensate for pro-
nounced amplitude changes in the function profile. In this
implementation we favour the use of the weighted median of
a section of the detection function centered around the candi-
date frame:

d¢[n] = X - median(D[n,,]) + & (6)



with n,,, € [m —a, m + b] where the section D[n,,] contains
a spectral frames before m and b after. The scaling factor A
and the fine-tuning threshold § are predefined parameters.

However, real-time implementation imposes more severe
temporal constraints than offline implementations. Offline,
the normalisation and DC-removal processes use information
from a large time segment both before and after the current
frame, allowing the use of fixed parameters for thresholding.
In real-time we can only approximate this by using a long
sliding window — thus causing long delays. We therefore pro-
pose an alternative thresholding operation using a small slid-
ing window:

d¢[n] = A - median(D[n,,]) + a(D[ny,]) @)

where « is a positive weighting factor and (D[n,,]) is the
mean of D[n| over the same window of spectral frames n.,.
The introduction of the mean value attempts to replicate the
effects of the normalisation and DC-removal processes, with-
out the use of a long window, by using a dynamic value for
the fine-tuning threshold. Onsets are then selected at local
maxima of D[n| — 0;[n]. Experimental results confirm that,
for small values of a and b, the modified threshold is robust
to dynamic changes in the signal.

2.3 Silence gate

To reject false positives detected in areas of low energy,
a simple envelope detector was built by measuring the mean
energy of a frame of the signal. When loudness of a frame
drops below a given threshold, typically —80 dB, it indicates
the note offset. Onsets detected in the middle of a silent re-
gion are discarded. The threshold parameter can be adapted
to the expected level of background noise.

3 Software library and results

3.1 Software library

We have implemented a small C library, providing device
and file abstractions for both audio and MIDI, along with a set
of processing units: phase vocoder, onset detection functions,
peak-pickers. The library makes use of modern libraries such
as FFTW and libsndfile. It also integrates with the Jack Audio
Connection Kit (JACK). We can therefore reach low latency
performances of modern Linux systems (MacMillan, Droett-
boom, and Fujinaga 2001).

A small application has been written to run segmentation
experiments both real-time and offline. This ensures that the
implementation is usable (decent overhead in real time mode)
as well as correct (fast offline performance estimation). Us-
ing an overlap of 512 samples at 44100 H z, the system can

run on a standard desktop with a total latency of below 30ms.
This breaks down into an 11 ms delay caused by the for-
ward analysis needed for the thresholding operation (b = 1),
another 11 ms introduced by the phase vocoder buffer and
under 8 ms for JACK and hardware latencies as tested by
(MacMillan, Droettboom, and Fujinaga 2001). All the results
above can be obtained using the JACK audio server at a mere
10% of processor usage on an AMD/Athlon 700 MHz. Of-
fline testing for each function (and per set of peak-picking pa-
rameters) takes a few seconds of processing time per minute
of audio.

3.2 Experimental results

We used a set of 23 monaural audio signals, sampled at
44100 Hz and representing a wide range of music styles and
sound mixtures. In a previous step, the onset times of each
of these files were carefully hand-labeled. The proportions
of both correct and misplaced onsets were estimated by com-
paring detections against the database of 1066 hand-labeled
onsets in the test set.

All detection functions have been peak-picked using a
window of size a = 5 and b = 1 in Eq. 7, and are plotted for
values of o € [0.00, 1.15]. The proportion of good detections
against false positives after peak-picking is shown in Fig. 2. It
can be seen that, in contrast to the offline case, the HFC out-
performs the complex-domain onset detection. This is due
to the effect that using short lengths of n,, has on smooth
detection functions. Note that the complex-domain, phase-
based and spectral difference approaches produce functions
smoother than the HFC, as they operate on information from
more than one frame.

Fig. 3 shows results when combining onset detection with
the output of the silence gate. By using the silence detec-
tion to threshold onsets detected in low-energy conditions —
where onsets are more likely to be produced by background
noise — we obtain significant improvements on the detection
accuracy. The simple gate reduces the average number of
false positives by about 2% in all functions, while having a
minimal effect on the percentage of correct detections. The
gating level can be fine-tuned to recording conditions for bet-
ter results.

Our segmentation is intended as a first step towards the
real-time coding of note objects. Errors in the segmentation
are inevitable (as the figures show), but we can attempt to
minimise their effect on the final coded objects. In a musi-
cal scene, it is better to over-segment objects than to under-
segment them, as the estimation of attributes such as pitch
and loudness will be less affected — two notes with the same
pitch is preferable to one note with an average pitch unre-
lated to those of the original notes. Moreover, we know from
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Figure 2: Correct detections against false positives for differ-
ent « in Eq. 7 and for various detection functions.

the theory that while the HFC is well-suited for the detection
of percussive onsets, spectral-difference methods, such as the
complex-domain approach are well-suited for the detection
of tonal — non-percussive — onsets. Therefore, to maximise
the number of detections, we can combine these functions to
produce a note segmentation algorithm tailored to the require-
ments of a real-time object-based coding system.

The design of our software library, allows for the easy
implementation of various combinations. Fig. 3 (top curve)
shows the benefit of multiplying the HFC and the complex-
domain function. This combination consistently returns the
best results for the whole set, increasing the overall reliabil-
ity of the segmentation, and supporting the prevailing view
that the different detection functions complement each other.
This result is not surprising if we consider that both functions
outperform the others, and that the spectral difference and the
phase deviation can be seen as subsets of the complex-domain
approach.

4 Conclusions and Future work

A complete system for real-time extraction of onsets from
a live audio source has been described. Experiments confirm
that combinations of the different detection functions along
with a simple silence gate increase good detections and lower
over-detections. The proposed peak-picking approach returns
satisfactory results in a low-latency environment. Current de-
velopment efforts are focused on the real-time estimation of
attributes for the segmented note objects.

While the code would clearly benefit from some profil-
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Figure 3: Correct detections against false positives as in Fig. 2
but using a silence gate.

ing, the design of the library allows the use of selected units
from other plug-in systems such as Max, OSC, CLAM and
LADSPA. Simple programs have already been written for use
during live music performances — for instance to drive MIDI
instruments.
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